Functional organization for direction of motion and its relationship to orientation maps in cat area 18.
نویسندگان
چکیده
The goal of this study was to explore the functional organization of direction of motion in cat area 18. Optical imaging was used to record the activity of populations of neurons. We found a patchy distribution of cortical regions exhibiting preference for one direction over the opposite direction of motion. The degree of clustering according to preference of direction was two to four times smaller than that observed for orientation. In general, direction preference changed smoothly along the cortical surface; however, discontinuities in the direction maps were observed. These discontinuities formed lines that separated pairs of patches with preference for opposite directions. The functional maps for direction and for orientation preference were closely related; typically, an iso-orientation patch was divided into regions that exhibited preference for opposite directions, orthogonal to the orientation. In addition, the lines of discontinuity within the direction map often connected points of singularity in the orientation map. Although the organization of both domains was related, the direction and the orientation selective responses were separable; whereas the selective response according to direction of motion was nearly independent of the length of bars used for visual stimulation, the selective response to orientation decreased significantly with decreasing length of the bars. Extensive single and multiunit electrical recordings, targeted to selected domains of the functional maps, confirmed the features revealed by optical imaging. We conclude that significant processing of direction of motion is performed early in the cat visual pathway.
منابع مشابه
Functional organization of input from areas 17 and 18 to an extrastriate area in the cat.
In the cat, areas 17 and 18 have 2 main cortical targets: area 19 and a large region of suprasylvian cortex, referred to here as the Clare-Bishop area (Hubel and Wiesel, 1969). The functional organization of the latter area is not well understood. It seems likely that its organization reflects, in part, the organization of its inputs from areas 17 and 18, and I therefore studied the functional ...
متن کاملThe layout of iso-orientation domains in area 18 of cat visual cortex: optical imaging reveals a pinwheel-like organization.
In this study we used optical imaging based on activity-dependent intrinsic signals to determine the distribution of cells responding to gratings of various orientations moving in different directions in area 18 of cat visual cortex. To test directional-selective clustering of neurons, we compared cortical activity maps obtained by stimulation with two gratings of identical orientation but movi...
متن کاملCoexistence of linear zones and pinwheels within orientation maps in cat visual cortex.
Revealing the layout of cortical maps is important both for understanding the processes involved in their development and for uncovering the mechanisms underlying neural computation. The typical organization of orientation maps in the cat visual cortex is radial; complete orientation cycles are mapped around orientation singularities. In contrast, long linear zones of orientation representation...
متن کاملThe role of feedback in shaping neural representations in cat visual cortex.
In the primary visual cortex, neurons with similar response preferences are grouped into domains forming continuous maps of stimulus orientation and direction of movement. These properties are widely believed to result from the combination of ascending and lateral interactions in the visual system. We have tested this view by examining the influence of deactivating feedback signals descending f...
متن کاملFunctional organization of envelope-responsive neurons in early visual cortex: organization of carrier tuning properties.
It is well established that visual cortex neurons having similar selectivity for orientation, direction of motion, ocular dominance, and other properties of first-order (luminance-defined) stimuli are clustered into a columnar organization. However, the cortical architecture of neuronal responses to second-order (contrast/texture-defined) stimuli is poorly understood. A useful second-order stim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 16 21 شماره
صفحات -
تاریخ انتشار 1996